
J .  Fluid Mech. (1996), vol. 316, pp. 29-51 
Copyright 0 1996 Cambridge University Press 

29 

Mechanics of collisional motion of granular 
materials. Part 3. Self-similar shock wave 

propagation 

By A. GOLDSHTEIN, M. SHAPIROT A N D  C. GUTFINGER 
Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel 

(Received 2 November 1994 and in revised form 29 December 1995) 

Shock wave propagation arising from steady one-dimensional motion of a piston in a 
granular gas composed of inelastically colliding particles is treated theoretically. A self- 
similar long-time solution is obtained in the strong shock wave approximation for all 
values of the upstream gas volumetric concentration v,. Closed form expressions for 
the long-time shock wave speed and the granular pressure on the piston are obtained. 
These quantities are shown to be independent of the particle collisional properties, 
provided their impacts are accompanied by kinetic energy losses. The shock wave speed 
of such non-conservative gases is shown to be less than that for molecular gases by a 
factor of about 2. 

The effect of particle kinetic energy dissipation is to form a stagnant layer (solid 
block), on the surface of the moving piston, with density equal to the maximal packing 
density, vM. The thickness of this densely packed layer increases indefinitely with time. 
The layer is separated from the shock front by a fluidized region of agitated 
(chaotically moving) particles. The (long-time, constant) thickness of this layer, as well 
as the kinetic energy (granular temperature) distribution within it are calculated for 
various values of particle restitution and surface roughness coefficients. The asymptotic 
cases of dilute (v, 6 1) and dense (v, - vM) granular gases are treated analytically, 
using the corresponding expressions for the equilibrium radial distribution functions 
and the pertinent equations of state. The thickness of the fluidized region is shown to 
be independent of the piston velocity. 

The calculated results are discussed in relation to the problem of vibrofluidized 
granular layers, wherein shock and expansion waves were registered. The average 
granular kinetic energy in the fluidized region behind the shock front calculated here 
compared favourably with that measured and calculated (Goldshtein et al. 1995) for 
vibrofluidized layers of spherical granules. 

1. Introduction 
Vibrofluidized granular materials are widely used in various industrial processes. A 

common feature of many granular flows is their occurrence in the collisional regime. 
This means that the granules interact with each other through collisions which are 
responsible for momentum transfer and kinetic energy dissipation in the flow. These 
collisional flow regimes of non-conservative granular materials may be modelled on the 
basis of the kinetic theory of non-uniform gases (Chapman & Cowling 1970). 

The kinetic theory is aimed at deriving the appropriate hydrodynamic equations 
governing granular flows (see Campbell 1990). These equations may be obtained on the 
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basis of an appropriately modified Boltzmann equation either by approximate 
methods of gas kinetic theory (Lun et al. 1984; Jenkins & Richman 1985a, b) or by a 
rigorous application of a variant of the Champan-Enskog solution scheme (Goldshtein 
& Shapiro 1995). The latter method has the advantage of yielding the right form of the 
hydrodynamic equations and, simultaneously, establishing their validity range. The 
latter is expressed in terms of the parameters of the collisional model chosen for 
calculations. In most cases these include the particle roughness /3, and restitution 
coefficient (inelasticity) e (Lun 1991). 

Such theories were developed for the rapid granular motion prevailing in shearing 
flows (e.g. see the review by Campbell 1990), and in fluidized beds (Homsy, Jackson & 
Grace 1992). Much less attention have been devoted to vibrofluidized rapid granular 
flows (see Savage 1988; Goldshtein et al. 1995). In this type of granular motion the 
collisional regime is sustained by virtue of work performed by the oscillating plate. This 
work is converted into kinetic energy of chaotic granular motion, which is then 
dissipated by means of particles’ inelastic collisions. The physical mechanism 
responsible for conversion of work performed by the oscillating plate into kinetic 
energy of chaotic granular motions is not well understood. 

This paper is a part of a long-term study, the ultimate aim of which is the 
development of a mathematical model of vibrofluidized granular layers. Specifically, 
we are interested in vibrofluidized granular motion occurring in the collisional regime. 
In our recent experimental work (Goldshtein et al. 1995) we observed compression 
(shock) and expansion waves propagating across vibrated granular layers composed of 
5mm glass beads. These processes appear to be responsible for the kinetic energy 
transfer between the averaged layer motion and granule random motion. Moreover, 
these waves were shown to govern the vibrational state of granular layers, which is 
characterized by granular energy (temperature), density and pressure. This study is 
thus devoted to theoretical investigations of the wave propagation process within 
granular layers. Specifically, we consider shock wave propagation within a system of 
solid particles. A comparable problem for the expansion wave, which is also relevant 
to modelling vibrofluidization of granular layers, is treated in a companion paper 
(Goldshtein, Shapiro & Gutfinger 1996). 

The hydrodynamic equations used for modelling shear-induced flows are of the 
Navier-Stokes type, i.e. they are endowed with viscosity and conductivity terms 
(Campbell 1990). In one-dimensional shearless granular flows, like those prevailing in 
vibrated layers, these effects are insignificant since they are dominated by shock waves, 
which result from the granular gas compressibility. Accordingly, the hydrodynamic 
equations governing these wave propagation processes are of the Euler type. Such 
equations were derived by Goldshtein & Shapiro (1995) for rigid spherical particles of 
arbitrary (not necessarily small) inelasticity and roughness. 

Wave propagation through an inviscid gas is one of the classical problems of 
compressible fluid dynamics (Courant & Friedrichs 1948). Unlike in molecular gases 
the motion of a granular medium is characterized by losses of granular kinetic energy 
induced by particle non-conservative collisions. The motion of a gas of such particles 
is described by appropriate hydrodynamic equations, explicitly accounting for the 
collisional losses. The objective of this work is to use these equations in order to 
describe the propagation of a stationary shock wave. This is done on the basis of the 
model problem of a piston moving with a constant speed into a granular gas of a 
uniform density filling the semi-infinite domain. 

The existence of such a shock wave in a dissipative granular gas may be illustrated 
by the following simple considerations. Consider a solid piston moving with a finite 



Mechanics of collisional motion of granular materials 31 

'1 vMr>/% v, - - 7---- 

I I I F 

h 
I I h M  A 

I zM 

0 '  

XM XF X 

FIGURE 1. Schematic of the shock wave problem. 

speed U into a cold motionless gas of a zero granular temperature in the absence of 
gravity. Supposing that the gas hydrodynamic properties change continuously, the 
disturbed domain propagates with the speed of sound, a, of the granular gas. Far from 
the piston this gas will inevitably have a zero temperature (kinetic energy) as a result 
of collisional energy losses. Therefore, the disturbances induced by the piston will 
propagate with the speed a, which is close to zero. On the other hand, since the 
disturbed domain cannot decrease, this speed cannot be less than U. Hence, no 
continuous (i.e. shockless) granular flow can exist. Rather, one can expect that a shock 
front is formed propagating into the granular gas with a velocity D exceeding the 
piston speed U. 

In this paper we investigate the effect of granular properties on the shock wave speed 
D and the gas hydrodynamic properties in the disturbed domain between the shock 
front and the piston. 

Granular gas gains kinetic energy when passing through the shock front. Inelastic 
non-conservative collisions lead to a continuous decrease of this granular energy and, 
hence, the pressure behind the front. As a result, a layer of densely packed granules 
(which have completely lost their kinetic energy) is formed on the moving piston. The 
formation of such a layer, which has a finite density which is the maximal possible that 
may be achieved within granular media, constitutes a specific feature distinguishing 
non-conservative systems from molecular gases. This phenomenon was disregarded by 
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Matveev (1983) who treated a related problem of sedimentation of a granular gas on 
a solid plate, where infinite gas density was obtained. 

The densely packed layer is separated from the shock front by a fluidized region. 
Determination of the collisional state of the granular gas within this region, and the 
shock wave speed D, constitute specific goals of our treatment. These parameters, 
which are controlled by granular collisional properties, as obtained by the solution for 
the infinite layer, are then used to interpret the ad hoc solution (Goldshtein et al. 1995), 
developed for a periodically vibrated layer of finite thickness. 

Other possible applications of the solution developed here include various 
technological processes involving powders and dusts in low-pressure conditions, and 
the interaction between a projectile and a loosely packed granular bed. 

2. Governing equations 
2.1. Euler hydrodynamic equation 

Consider an ensemble of identical inelastic rough spherical particles - granules of 
diameter IT, mass rn and density pp - performing chaotic translational and rotational 
motions. The particles are assumed to be sufficiently heavy that the effect of the drag 
force (resulting from interactions with the surrounding gas) on their motion is 
negligible. We consider one-dimensional granular gas flow in a semi-infinite domain 
bounded by a piston moving in a tube of a constant (unit) cross-section along the x- 
axis (see figure 1). 

It will prove convenient to describe the motion of the granular gas in Lagrangian 
coordinates (Courant & Friedrichs 1948) which are time variable, t ,  and the mass 
variable h : 

h = pw5. 0 

Neglecting the effect of gravitational force, and thermal ‘conductivity’ and ‘viscosity’ 
of the granular gas, one obtains the equations for conservation of mass, momentum 
and energy in the Lagrangian representation (Goldshtein et al. 1995) : 

(1 a-c) 

where p = rnn = vpp is the bulk mass density, n is the particle number density, v is the 
solids fraction (volume of solids per unit volume of the gas), u is the bulk 
hydrodynamic velocity, E is the total energy of particles’ random motion, P is the 
(hydrostatic) granular pressure, and I is the volumetric sink term, accounting for 
particle kinetic energy losses occurring during their collisions. 

The density p of the granular medium may change from arbitrary small values up to 
a maximal value pM, corresponding to the most densely packed state of incompressible 
solid granules. The mass and momentum conservation equations (1 a,  b) are valid for 
any continuum. Accordingly, they may be used for the granular medium prevailing 
both in fluidized and densely packed states, i.e. 0 < p d p M .  In contrast, the kinetic 
energy equation will be considered only in the fluidized state, i.e. 0 < p < pM. The 
above equations require a constitutive relationship for the sink term, and an equation 
of the granular gas state. These equations relate P and Z with other hydrodynamic and 
mechanical properties of the colliding granules. Additionally, modelling of flows of 
rough particles requires knowledge of the kinetic energy partition between the 
translational and rotational modes. 
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Equation of state Range of v g(v) Reference 

1 

0 < v < 0.5 
2 - v  

g,,(v) = ___ 2( 1 - v)3 

Chapman & Cowling 

Carnahan & Starling 

Alder & Hoover 
(1 968) 

( 1970) 

( 1969) 

Equation (4 )  v - V M  g,(v) = [l -(v/v,)””-’ Ogawa et al. (1980) 
Equation (4 )  
Equation (4) o < v < v ,  g( v) = [ 1 - (v /  YM)4”M’3]-1 Present 

0 d v < 0.55 g,,(v) = (1 - v/v,)-5”,’2 Lun & Savage (1986) 

TABLE 1. Equilibrium radial distribution functions and corresponding equations of state 

Constitutive relationships for the above equations have been obtained in several 
studies dealing with vibrofluidized motion (Raskin 1975) and rapid granular flows 
(Jenkins & Richman 1985a, b :  Lun & Savage 1986, 1987; Lun et al. 1984; Lun 1991). 
These works employed different transport equations, adopted from kinetic theories of 
molecular gases (Grad 1949; Condiff, Lu & Dahler 1965; Chapman & Cowling 1970; 
McCoy, Sandler & Dahler 1966; Theodosopulu & Dahler 1974) together with several 
ad hoc hypotheses pertaining to the particle distribution function. 

We use the constitutive relationship and the state equation, which were recently 
obtained (Goldshtein & Shapiro 1995) by rigorously solving the Boltzmann equation, 
which was appropriately modified to include a fairly general particle collisional model. 
This also provides the kinetic energy partition between rotational and translational 
modes and expressions for the sink term I ,  appearing in ( 1  c). The average energy E of 
particle random motion may be expressed via granular kinetic translational q and 
rotational T, temperatures in the following standard form: 

q = $Eat, T, = $Ear, q+ T, = $E, (2 a-c) 

where translational fa, and rotational far constant-pressure specific heats depend upon 
mechanical collisional and inertial particle properties (see the Appendix). 

The general equation of state of the granular gas can be written in the form 
(Goldshtein & Shapiro 1995) 

E 
P=P,+P,, P --a,vp,, P , =  Pk[1+2(1+e)vg(v)], ‘ - 2m 

(3 a-c) 

where P is the granular pressure, which is composed of collisional (Pk) and kinetic 
(4) parts and g(v) is the equilibrium radial distribution function, which is independent 
of particle collisional properties and may be evaluated from the equation of state for 
a rigid elastic sphere gas model. Equations (3a-c) may be combined to yield the 
following equation of state : 

c 

The above constitutive equation does not account for the granular gas viscosity, 
which is irrelevant in the present case of one-dimensional shearless motion (see also 
Goldshtein & Shapiro 1995; Goldshtein et al. 1995). 

Several approximations suggested for g(v) are summarized in table 1 .  In the simplest 
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case of a dilute granular gas (when the mean free path of the rigid-spheres system is 
much larger than their diameter) g(u) = 1 and the corresponding equation of state is 
equivalent to the ideal gas equation. 

Alder & Hoover (1968) suggested an approximation for g, and the corresponding 
equation of state, which are valid when v is close to the maximal packing density vM. 
Other correlations (Carnahan & Starling 1969; Ogawa, Umemura & Oshima 1980; 
Lun & Savage 1986) are valid up to intermediate values of v, i.e. they reproduce the 
dilute gas expressions, but fail to comply with the high-density model of Alder & 
Hoover (1968). 

In this work we use the following approximation for g :  

which is accurate for both of the above limiting situations. 

& Shapiro 1995): 
The sink term for the collisional model (3a, b) has the following form (Goldshtein 

where Ci (i = 0,1,2) are functions of particle inelasticity e, and roughness, /3 (see 
(A4)-(A ll)), and were investigated in Part 1 (Goldshtein & Shapiro 1995). In 
particular, these coefficients vanish for conservative gases, i.e. e = 1/31 = 1. 

Special consideration should be given to the case v +  vM. In this singular limit the 
function g(v) and the expression in square brackets on the right-hand side of (4) tend 
to infinity. This means that in such a limiting situation a granular gas may have a 
vanishingly small kinetic energy, but a finite pressure. This singular limit will be further 
discussed in $ 3 ,  in relation to the pressure P prevailing in the solid block accumulating 
at the moving piston. 

It should be noted that the energy equation is valid provided that the granular 
material behaves like a fluid, i.e. the random velocities of any two granules are not 
correlated. This means that no clusters are formed within the material. Such clusters 
have been shown to form in simple shear granular flows (Lun & Bent 1994). The 
formation of these structures in wavy motion can be investigated by computer 
simulations (Luding, Herrmann & Blumen 1994; Lan & Rosato 1995). However, the 
mass and momentum equations of type (1 a, b) are applicable also to the case where 
clusters are present. 

2.2. Conditions on the shock front 

As in classical gas dynamics the problem of shock wave propagation requires 
formulation of the jump conditions for the hydrodynamic quantities across the 
discontinuity (the Rankine-Hugoniot condition). These conditions for non-con- 
servative granular gases were obtained (Goldshtein & Shapiro 1995) in the Euler 
coordinate system. Noting that (1 a, b) are explicitly independent of particle roughness 
and inelasticity, the jump conditions derived from the momentum and mass equations 
are the same as those for an ordinary gas (see Courant & Friedrichs 1948). Bearing in 
mind the relation between the kinematic speed, D,  and the mass speed of the shock 
front, D, = (D-  u)p, one obtains the Rankine-Hugoniot conditions for the granular 
gas in the Lagrangian representation: 

[u+DL/P] = 0, [P-D,u] = 0, 
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Here D, is the Lagrangian shock wave velocity and for any hydrodynamic quantity 
qi (i.e. u,p, P), the symbols [ . . . I ,  {. ..} denote [qi] = qi0-q5,, {qi} = (qio + qi1)/2, with qio and 
qi, being the respective values of qi before and after the discontinuity. 

In $3 we employ a particular case of conditions (7), namely the strong shock wave 
approximation (Courant & Friedrichs 1948). In this case energy Eo and pressure Po 
before the shock front are much smaller than their corresponding values El ,  P, behind 
the shock wave and the jump conditions (7) reduce to the following strong shock wave 
conditions : 

(8 c) 
4 - - P1 4 --I = 

Po .,(C, - Cl + (1 - C,) P/P,)Il 4 1  - c, + (1 - C,) 2(1+ e)  v,g(v,)l. 

Consider now these strong shock wave conditions in the limiting cases of dilute and 
dense gases. For a dilute gas model (v < 1) equations (8a,  b) do not change while (8c) 
reduces to 

= +a# - C,) 1. (9) 

Introducing the adiabatic exponent y 

y = 1 +ia,(l -C,) (10) 

one can rewrite (9) in the familiar form of Rankine-Hugoniot conditions for molecular 
gases (see Courant & Friedrichs 1948): 

Therefore, for a dilute granular gas model, particle roughness and inelasticity affect 
shock wave conditions only via y. This parameter attains the following values in the 
limiting (conservative) cases: (i) perfectly smooth elastic particles: e = 1, p = - 1, 
at = 4/3, y = 5/3; (ii) perfectly rough elastic particles: e = 1, /3 = 1, at = 2/3, y = 4/3. 
For a non-conservative dilute granular gas the effect of the kinetic energy losses on this 
property is represented by the factor (1 - Cl). This factor is the first-order contribution 
(proportional to the velocity gradient) to the sink term (6), changing the translational 
specific heat 4 2  by a factor of (1 - C,). 

For the dense gas model (see table 1) jump conditions (8a-c) reduce respectively to 

where 
8 

3a,(1 -C,)(l+e)' x(e , / j )  = 1 + 

One can see that the first-order contribution to the sink term (6) increases the 
translational constant-pressure specific heat 4 2  of a dense granular gas by factor of 

The above simple conclusions about the influence of the sink term on the strong 
shock wave conditions are valid for the limiting case of dilute and high-density 
granular gas models only. 

( 1  - C,). 
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3. The shock wave problem 
3.1. Problem formulation 

Consider a semi-infinite (x > 0) tube uniformly filled with a ‘cold’ quiescent granular 
gas, bounded by a piston initially located at x = 0. The gas initial upstream (marked 
by subscript 0) hydrodynamic quantities are specified by the following initial 
conditions : 

Assume that beginning at time t = 0 the gas is set in motion by a piston propagating 
in the positive direction with a constant speed U. We describe the flow of the granular 
gas in a stationary frame with the origin x = 0 located at the initial position of the 
piston. This allows us to set the following boundary condition: 

Po = 0, Eo = 0, uo = 0, v,, = const 4= 0, t < 0. ( 1 3 4  

u =  U at x =  Ut or h = 0 .  (13b) 

In the circumstances described by the above initial and boundary conditions the 
moving piston generates a shock wave, the front of which propagates with a (time- 
dependent) speed D, or the corresponding mass speed D, = Dp,. We denote by vl: ul, 
PI the granular gas properties immediately behind the shock front. For classical 
(conservative) gases the distribution of these quantities between the piston and the 
shock front is uniform. This is no longer true for the granular gas, which is 
characterized by the particles’ collisional kinetic energy losses. Those particles which 
have completely lost their kinetic energy form a dense layer (solid block), of the 
maximal possible volumetric density v,, on the piston surface, the thickness of which, 
x, (or h,) grows with time (see figure 1). Particles in the region between the shock 
front and the densely packed layer prevail in an agitated or fluidized hydrodynamic 
state, which is governed by the Euler hydrodynamic equations (1k(4), (6). These 
equations with the appropriate radial distribution function, given by (9, should be 
solved in the domain x, < x < xF, (or h ,  < h < hF) where x,, h, are the (time- 
dependent) kinematic and mass front locations. The corresponding jump conditions at 
the shock front, necessary for the solution, are given by (8a-c). 

For conservative systems the sink term on the right-hand side of (1 c) is zero. The 
problem of shock wave propagation through such a gas admits a similarity solution of 
the type 

where q9 is any of the hydrodynamic properties (velocity, density, pressure) and 0: is 
a constant shock wave propagation speed (Courant & Friedrichs 1948). Moreover, the 
hydrodynamic properties pl, u,, Pl in the region between the shock front and the piston 
are constants, which together with 0: are determined from boundary conditions (13) 
and jump conditions (8u-c) upon setting C, = C, = 0. 

In contrast to molecular gases, flowing non-conservative granular systems lose their 
random-motion kinetic energy Ea t  a rate described by the sink term I in (6). This term 
introduces a certain timescale, t,, which characterizes the rate of kinetic energy 
dissipation, and which does not allow similarity solutions of the type shown in (14). In 
particular, here the mass shock wave speed is a time-dependent function D, = D,(t). 
In order to understand the process of wave propagation in non-conservative systems, 
suppose that the granular gas is characterized by small kinetic energy losses (i.e. e and 
1/31 are both close to 1). Clearly, for short times ( t  < t,), when the kinetic energy losses 
are small, such a (‘almost conservative’) granular gas will behave like a conservative 
gas. In particular, for such short times one can expect that D,(t) - 0:. However, with 

11. = $(tDL-h), t > 0, (14) 
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increasing time, owing to kinetic energy losses the gas energy El and, hence, the 
pressure c immediately behind the front decrease, which inevitably leads to a 
concomitant decrease of D,. On the other hand, the shock speed cannot be lower than, 
or even equal to, the speed of the piston U,  since this contradicts the basic mass 
conservation law. Therefore, at least for large times one has 

(15a) 

On the other hand, the shock wave cannot disappear, in the sense that a continuous 
density distribution cannot exist everywhere. Otherwise, one encounters a situation 
where infinitesimal density disturbances propagate with the speed of sound a, in the 
undisturbed domain, where the granular temperature is zero, and hence a, = 0. 

The above observation of a (large-time) temporal diminution of DL(t) leads to 
the conclusion that the shock front speed will eventually approach a certain limiting 
value Dz: 

Consequently, for times greatly exceeding the characteristic value t, (which will be 
estimated in the discussion section) the speed DL(t), the hydrodynamic properties p,(t), 
ul(t), c(t) immediately behind the shock front approach constant values. This steady 
wave propagation regime is determined by the balance between the power generated by 
the moving piston and the rate of granular energy losses in the fluidized region. One 
can, therefore, expect that these properties will approach their stationary forms : 

p, U < DL(t) < D;. 

DL(t) + 0: when t +a. (15b) 

where 
u = u(z), p = p(z), P = P(z),  (1 6 a-c) 

D,(t)dt-h=D,"t-h+h,, t %- t, (16d) 

is the coordinate relative to the shock front, with the constant h, being 

h, = ~ ~ [ D L ( t ) - D ~ ] d t .  

The solution (16a-c) is valid only in the fluidized region 0 d z d Z,, where Z,  is 
its thickness, which also reaches a constant asymptotic long-time value. However, 
(16d) implies that 

This means that the amount h, of the material within the dense layer also increases 
with the rate DF. 

The large-time solution (15 b)-(17) will be a posteriori verified by determination of 
the functions (16a-c) in such a way that they obey the governing equations and 
boundary and jump conditions. 

This ultimate thickness Z ,  of the fluidized region is to be determined from the 
solution of the problem. Therefore, an additional boundary condition at z = 2, 
should be specified. This is provided by noting that at the most dense state any random 
particle motion is impossible and the particle hydrodynamic velocity is equal to the 
piston speed, i.e. 

v = v M ,  u =  U, E = 0 ,  P=Pp" =const at z = Z M ,  (18a-d) 

where Pp" is the constant pressure prevailing in the densely packed domain z 2 Z,, the 
value of which will be determined below. Since the density in (18 a) reaches its maximal 
value and the kinetic energy vanishes, the point z = Z,  is singular and condition (1 8 d)  

Z,= DFt-h,+h,. (17) 
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ensures that the pressure in this point is neither zero nor infinite. Mathematically 
conditions ( 1  8 )  constitute the requirement of continuity imposed on all hydrodynamic 
quantities in the region between the shock front and the piston. The physical 
significance of a non-zero pressure within the solid block is that the piston performs 
work at the rate P; U, which is used to compensate the granular kinetic energy losses 
in the fluidized region due to particle collisions. 

The problem of shock wave propagation through a granular gas, as formulated 
above for a quiescent gas before the front, represents the strong shock wave problem. 
We note that the assumption Eo = Po = 0 used in (13a) places no physical limitation 
on the stationary solution (16a-c). Indeed, the latter is valid only for long times, at 
which the kinetic energy in the undisturbed region has decayed to zero, even if initially 
the granular gas had Eo =k 0. 

Introduce solution (16a-d) into ( 1  a, b) and integrate them subject to (8a,  b), to 
express the bulk velocity u and the granular pressure P via the bulk density p :  

Conditions (18a, b) together with (19a, b) yield the following expressions for the 
shock wave speed and pressure at the edge of the dense layer for the stationary shock 
wave motion: 

02 = , Pp"= UDF 
1 - POIPM 

Substituting the trial solution (16a-d) into ( l c )  with the sink term given by (6), one 
obtains the following ordinary differential equation : 

d E Eup c1 d (DZ) C? (E)3i2  . DZ- - + ~ [ ( 1 - C l ) + 2 ( 1 - C , ) ( 1 + e ) v g ( u ) ] -  ~ =-pg(u) 
dz 0 m 2m dz P 

(21) 
Equation (19b) in combination with equation of state (4)  enable us to rewrite the 

differential equation (21) in terms of the function p = p(z). This equation does not 
include the piston speed U, since every term is proportional to U 3 .  In addition v M  in 
the boundary conditions (18a) is also independent of U and so is the density u1 
appearing in the jump condition (8c)  at the shock front by virtue of the strong 
shock wave approximation. Bearing in mind the above, and simple dimensional 
considerations, one can write (17) in the form (cf. (39)) 

Equation (21) is investigated in 593.2 and 3.3 for different approximations of the 
radial distribution function considered in 92.1. A particular case of this problem, 
pertaining to a highly dense granular gas, enables one to obtain a closed form 
analytical solution, outlined in 93.2. 

We analyse expressions ( 2 0 4  b) for the shock wave speed and pressure at the edge 
of the dense layer. One can see that these quantities are independent of the particle 
collisional properties and specific heats. This is in contrast with the comparable results 
for molecular gases (Courant & Friedrichs 1948), namely 

DZ = , p", = UD;, 
1 - POlP1 

where p1 is related to po via expression (8c). 
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FIGURE 2 .  Ratios of the shock wave speeds and pressures behind the front of conservative (molecular, 
DE, Pz) and non-conservative (granular, D,", P,") gases. Data for molecular gases are calculated for 
e = 1, and /3 = - 1 (upper lines) and = 1 (lower lines). Straight lines: dilute and dense gas limits. 

The ratios of the classical and granular gas ultimate shock wave speeds and pressures 
behind the shock wave are shown in figure 2. DZ is seen to be larger than its non- 
conservative analogue DZ, and this is clearly explained by the kinetic energy losses, 
which increase with increasing vo causing, thereby, the concomitant increase of D;/D,". 
This ratio reaches a maximum in the limiting case of the highest initial density and a 
minimum for the dilute upstream gas. In all the cases the effect of non-conservative 
collisions results in no more than a 50% diminution of 02 relative to DZ. Smooth 
particles lose their kinetic energy faster (per collision), since their rotational degrees of 
freedom are excluded from the energy partition. Therefore for these particles the ratio 
DZ/DZ is larger than for rough particles. 

Limiting values of 02 for vo + 0, v M  may be calculated analytically. In particular, in 
the case of a dilute gas one can use (11) to obtain 

DZ/D," = (y + 1)/2, v0 + 0. 

For perfectly elastic (e  = 1) smooth (/3 = - 1) spheres, y = 5/3 which yields 
DZ/DZ = 4/3. For perfectly elastic rough particles (/3 = l), one gets DZ/DZ = 7/6 .  

The shock speed ratio in the dense limit may be evaluated using (12c, d ) :  

For perfectly elastic smooth spheres a, = 4/3 and the above limiting value is equal to 
2. In the comparable case of perfectly elastic rough particles a, = 2/3, which yields 
DO,/DZ = 3/2. 

The fundamental difference between the shock speeds of conservative and granular 
gases emphasizes the singular character of the limits e-t 1, 1/31 --f 1, where the kinetic 
energy losses in the granular gas approach zero. Expressions (20a, b), which are valid 
even for infinitesimally small losses, differ markedly from the corresponding 
expressions (22) for conservative gases. This means that even for very small inelasticities 
the state of the granular gas will ultimately approach the solution (16a-d), with the 
corresponding e- and P-independent shock wave speed (20 a). These collisional 
parameters will, however, affect the rate of approach of the exact solution to its ultimate 
asymptotic self-similar form. Clearly, as the kinetic energy losses tend to zero, the 
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characteristic time of this approach tends to infinity, as does the constant value h,, 
characterizing the (mass) distance covered by the shock wave until it reaches its 
ultimate speed. This distance cannot be determined from the asymptotic solution; its 
calculation requires obtaining a more general solution which is valid for shorter times, 
i.e. those preceding the asymptotic self-similar regime (see also discussion in $4). These 
considerations allow one to classify the solution of the form (16) as a self-similar 
solution of the second kind (Zel'dovich & Raizer 1966). 

The solutions developed here is based on the assumption that the solid block is 
undeformable. The behaviour of real granular materials differ from this model in the 
following: (i) the granules can be deformed, (ii) the pressure in the densely packed layer 
is non-uniform, since the pressure disturbances propagate from the shock front 
towards the piston not instantaneously, but with the finite speed of sound. To 
summarize the above, the solution developed here is valid when the absolute 
deformation of granules ,us and speed of sound in the solid block a, satisfy the 
following conditions : 

For the majority of densely packed granular materials the velocity a, is several 
hundreds of metres per second. This velocity is assumed to exceed significantly both the 
piston velocity (which for most vibrational machines is several metres per second) and 
the speed of the shock front propagation, given (20a), if p, is not very close to p M .  In 
this case and for sand-type (hard) materials the use of the undeformable solid block 
model is justifiable. 

Note that both equations (20a, b) for the shock speed can be obtained from purely 
mass and momentum conservation considerations. Indeed choosing a control volume 
between x = x , ~  and x = xF, the steady-state (applicable to the asymptotic self-similar 
regime, where xF -xM = const.) mass and momentum conservation principles state 
that the rate of increase of the mass (momentum) within the dense layer is equal to the 
mass (momentum) flux across the shock front, i.e. 

,us < 4 v M -  v,)li3, a, % DF/p,. 

(D,m/P, - U )  PM = D?, 

pp" +PM(D,mlP"- w2 = P,(D,m/P,)2, 

which immediately yields (20a, b). These considerations are not based on the existence 
of the fluidized domain behind the shock. They are valid for all non-conservative 
granular gases, including the case of absolutely inelastic collisions. In the latter case the 
extension of the fluidized domain tends to zero (see $3.2). 

In the case of conservative gases, where no losses occur, another (purely self-similar) 
regime prevails, with the density p = p1 behind the shock front. One can use the 
integral mass analyses, as above, with p M  replaced by pl, to obtain (22a) for the shock 
speed. This derivation also hinges upon energy considerations, which are embodied in 
the jump condition (8 c), expressing continuity of the energy flux across the shock front. 

Based on the above observations we can qualitatively discuss the effect of particle 
inelasticity on the extent of the fluidized domain. This domain is nil for absolutely 
inelastic collisions and tends to infinity for perfectly elastic collisions. The solution 
developed below concerns the intermediate situations, characterized by sufficiently 
small energy losses, for which the fluidized domain exists. 

3.2. The high-density granular gas approximation 

Let the initial mass density v, be close to that of the most dense granular packing v M ,  
so that 

A ,  = l-v,/v, Q 1. 
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Then, using this condition, one can rewrite expressions (20a,b) for the long-time 
(stationary) values of the shock front speed and the granular pressure immediately 
behind the front : 

Equations (19a), (19b) and (4) may be respectively rewritten in terms of the bulk 
velocity u, granular pressure P and kinetic energy E :  

4 Y )  = U(1 -A P(Y) = PpmU -Y),  ( 2 4 4  b)  

where A < A ,  < 1 and Pp" is defined by (23b). Furthermore, use (23a), (24c) and ( 5 )  
to reduce (21) to the following form: 

where 

, a,= 1-C2, a 3 = -  (26 U-C) 
4 

a -  ' - 3(1 +e)a ,  

The solution of (25) obeys the jump conditions (12c) at the shock wave front. Bearing 
in mind the definition (24d) of the variable y ,  one obtains the boundary condition for 
(25) in the form 

where x(e,/3) is given by ( 1 2 4 .  
Y (0 )  = l / x (e ,P) ,  (27) 

Solution of (25) may be written in the form 

where the constant A can be determined from the boundary condition (27). 

together with boundary condition (27) enables (28) to be rewritten in the form 
The left-hand side of (28) may be approximated by a parabolic function, which 

In the particular case of perfectly smooth particles i.e. at = 4/3 ,  /3 = - 1 the accuracy 
of this approximation is better than a few percent. Now (29) may be reduced to the 
following form : 

The maximal agitated mass 2, behind the shock front, wherein collisional granular 
motion exists, may be evaluated from (30) and condition ( l s a ) ,  which may be rewritten 
as 

Solving (30) and (31)  for Z,, one obtains 

A(ZM)  = 0. (31) 

(32) z M  = ' z ,  d(e ,  /3) a p M ,  
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FIGURE 3. Dimensionless mass of the fluidized layer behind the shock front. 

High-density limit (v, - vM). 
where the coefficient k,,,(e,P) is given by the following explicit function of particle 
inelasticity and roughness : 

As defined by (32) the coefficient k,,d has a clear physical meaning: it is equal to the 
number of rows in the random dense packing of the granular material. 

Using (32), (33), one can rewrite (30) in the following form: 

Now we evaluate the average value of the energy of random motion Ea, within the 
fluidized region which is generated by the steadily moving piston: 

E au =-p" Edz. 
zM 0 

(35) 

After substitution of E from (24c) jointly with (34) into the integral (35), one obtains 

Ea, = k E , d ( e , p ) m u 2 ,  ( 3 6 4  

where 

Figures 3 and 4 present the dependence of the above dimensionless coefficients k, d ,  

kEtd on the particles' collisional properties. One can see from figure 3 that kz ,d  tends 
to infinity for e = 1 and P- f 1 (conservative gases), for which no dense layer is formed 
upon the piston. In these non-conservative cases the fluidized mass and energy increase 
indefinitely with time and are not described by (33), (36b). For intermediate values of 

and e = 1 ,  kz,d is finite owing to kinetic energy losses, which reach their maximum 
at about /3 = 0.3, where kz ,d  is minimal. Comparable curves corresponding to lower e 
have a similar character; however, they show lower values of k,, owing to increasing 
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High-upstream-density limit (v, - v,). 
losses. The curve for e = 0.9 is bounded from the left by the maximal possible value of 
p for which the hydrodynamic equations ( 1 )  are valid (Goldshtein & Shapiro 1995). 
The curves plotted for lower values of e terminate at those values of /3 for which kz,d 
effectively vanishes. These cases correspond to large energy losses, for which the 
extension of the fluidized layers is less than one particle layer and the dense layer is 
formed immediately after the shock front. This may be seen directly from the 
Rankine-Hugoniot condition (8c); indeed for large losses (e.g. e < 0.8) the constants 
C,, C, appearing in (8c)  approach unity, which implies that g(v)-tcO, and, hence, 
v = v,. 

Figure 4 shows that for low values of the restitution coefficient (e.g. e = 0.7) kE,d  
decreases with /3 decreasing from 1 ,  which is also explained by increasing kinetic energy 
losses. A similar curve plotted for e = 0.9 exhibits a minimum at p - 0.3, which 
corresponds to the maximal losses. However, the uppermost curve for e = 1 has a 
different /3 dependence, i.e. does not exhibit a minimum of kE,d .  This is explained by 
the rapid increase of kz, d ,  and hence Z ,  (occurring when p + - I ) ,  which serves as a 
normalized value in the definition of kE,d (see (35)). Explicitly, both the integral in (35) 
and Z ,  tend to infinity when e = 1 and p+ f 1 ; however their ratio remains finite. The 
limiting values of kE,d  shown in figure 4 for e = 1 and p = f 1 do not reproduce the 
true value of kF,+ for conservative gases, which may be shown to be 0.5 and depends 
neither on the initial density, nor the molecular nature of the gas. 

3.3. Solution for arbitrary initial density 
Integrate both sides of (21) from v to v,, to obtain 

where 

(37) 

(3 8 a-c) 

(38 d )  
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which are of order unity for all v1 < v < vM. Similarly to the particular case of the high- 
density model (cf. (32)) we introduce here the amount of fluidized material Z,(v,): 

Z M  = OPM k,(e, p, vo, V M ) ,  (39) 

for any arbitrary initial density, wherein 

This expression, with v1 related to vo via (8 c), was numerically integrated. The results 
are presented in figure 5(a-c) as the ratio of k, to its high-density limiting value kz,d 
given by (33).  One can see that the general effect of decreasing density vo is to diminish 
k, with respect to k,,d. This can be explained by noting that with decreasing vo the 
pressure P; on the dense layer’s edge behind the front also decreases, which results in 
a smaller fluidized mass. 

The effect of the particle restitution coefficient upon k,/k,, is determined by the rate 
of change of each of the latter values with decreasing e. Clearly, k,,d decreases with 
decreasing e more rapidly than k,, since for dense systems particle collisions (causing 
the losses) occur more frequently than in systems characterized by lower vo. 
Alternatively, the fluidized mass of a more dissipative (characterized by a lower e) 
system exhibits a weaker dependence on v,,, than its higher-e counterpart. In particular, 
fore = 0.7 and /3 = 1, k,/k,,, - 1 down to almost vo = 0.05 (see figure 5b). Systems of 
smooth particles (p = - 1) have a stronger vo-dependence since their kinetic energy is 
distributed only between translational degrees of freedom, which promotes higher 
energy losses per collision. 

The limiting case of elastic particles cannot be analysed for 1/31 = 1 ; however, it is 
shown in figure 5(c )  for p = 0.8. The k,/k,,d-curves for this case follow the same 
general trend, i.e. they are weakly affected by vo (the most significant change for 
e = 1 amounts to a factor of 3.5). 

Note that in most practical cases (e < 0.9 and intermediate /3) not more than five 
particle layers can be fluidized. This theoretical result accords with experimental 
observations of vibrofluidized granular materials. Bachmann (1  940) found that 
vibrated beds of large lead and glass spheres act as a single block when the initial depth 
of the bed exceeds six particle monolayers. In our recent contribution (Goldshtein et 
al. 1995) we found a gas-like behaviour of vibrated beds with about 20 monolayers. 
Hence, the solution of the problem of a steadily pushing piston allows us to predict the 
existence of the upper limit for the bed depth which may be fluidized, and estimate its 
value. However, in the case of vibrational agitation this upper limit depends also upon 
the vibrational parameters. 

The effect of gas upstream density vo on mass distribution within the fluidized layer 
is more dramatic when presented in physical coordinates. These data are given in figure 
6, which shows the dependence of the density v upon the dimensionless distance 

measured from the shock front (see figure 1). The length of the fluidized 
be obtained from (37) and the x, h relation, and may be expressed by 
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FIGURE 6. Density distribution along the length of the fluidized layer, p = - 1, e = 0.9. 
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FIGURE 7. Dimensionless length of the fluidized layer behind the shock front 
us. upstream density, ,8 = - 1. 

One can observe in figure 6 jumps from v = vo to the value v1 determined by the 
condition (8b) ,  followed by a monotonic increase of v up to v,. 

The dimensionless length 6, of the fluidized region is seen to increase with 
decreasing v,, (which is in contrast to Z,, exhibiting the opposite behaviour, see figures 
4 and 5a). This length is shown in figure 7 us. v,,, for several e, where one can see that 
6, is almost independent of v, down to v,, = 0.1. The extent of the fluidized region is, \j 

however, diminished with decreasing restitution coefficient, as a result of kinetic energy 
losses. 

4. Discussion 
We now estimate the time t ,  required to attain the closest granular packing density 

at the piston surface. This may serve as a lower estimate of the time t ,  required for 
achieving the asymptotic self-similar regime, for which the solution (16) is valid. It is 
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obvious that the density p, at the piston is achieved during the time required for the 
shock wave to travel the mass distance Z,. Expressing 2, by 

z, = 1; D,(t) dt, 

and bearing in mind that D, does not change significantly (see figure 2),  one obtains 

Equations (20a), (42a) combined with the above result yield the following estimate: 

The coefficient k, depends strongly on the inelasticity e, while the factor (pM/po - 1) 
varies strongly with the upstream density vo. In the case of large vo and strong inelastic 
collisions one has t, - a / U .  In this case relation (42b) predicts the attainment of closest 
packing density after the piston travels a distance of the order of one particle diameter. 
This means that &,+O as e+O. In this case the granular motion is, of course, non- 
hydrodynamic. 

As follows from our analysis for t 9 t, the disturbed region may be subdivided into 
the densely packed solid block Ut < x < x, and the fluidized region x, < x < xF. 
According to (16d) and (20a) at these times the mass h, of the solid block increases 
with t as 

The corresponding physical length x,- Ut of the solid block may be obtained from 
(43) by division of h, by po. The dimensionless mass k, and length 6, of the fluidized 
region given by (40), (41 b) are independent of time t and of the piston speed U, and 
depend only on particle collisional properties and the upstream volume concentration. 

We now comment on the applicability of the hydrodynamic equations for the 
description of granular flows of inelastically colliding particles. In Part 1 (Goldshtein 
& Shapiro 1995) necessary conditions for the existence of a hydrodynamic solution for 
the Boltzmann equation written for the granular gas have been formulated in terms of 
particle inelasticity and roughness. Sufficient conditions for the existence of such a 
solution should be determined for each specific problem. In this work we determined 
that the latter conditions are independent of piston velocity U but, rather, depend on 
the particle upstream density vo. This is in contrast to shear-induced granular flows, 
where the existence of the collisional motion (described by the hydrodynamic solution) 
imposes constraints on the dimensionless velocity shear and the inelasticity 1 - e,  
restricting both of them to small values (Jenkins & Richman 1985a). The existence and 
significance of the hydrodynamic solution of the present problem depends on the 
length of the fluidized region compared with the mean free path of the colliding 
granules and/or their size. In this respect we will note that the vibrofluidized behaviour 
of beds composed of about 5-10 granular monolayers is satisfactorily described by the 
hydrodynamic equations (Goldshtein et al. 1995). 

The data on k,, k ,  obtained here may be used to interpret the results on shock wave 
propagation in vibrated granular layers (Goldshtein et al. 1995). This process occurs 
periodically, beginning from the moment when the freely falling layer meets the piston. 
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The average mass speed of wave propagation and pressure behind the shock was 
shown to be 

where A and w are the vibrational amplitude and frequency, respectively, and A ,  = 

1 - vo/vM < 1 .  Bearing in mind that at the moment of contact the piston-layer relative 
velocity was shown to be close to 2Aw, one can clearly observe that the above formulae 
upon the substitution U = 2Aw reproduce equations (22a, b), here obtained by a 
rigorous treatment. 

Goldshtein et al. (1995) derived the following expression for the average energy of 
the vibrated layer: 

which implicitly depends on the layer thickness h, via a dimensionless coefficient k ( H )  
and the kinetic energy loss parameter 

Using the relative layer-piston velocity U = 2Aw, expression (45) may be rewritten 
in the form 

which may be compared with expression (36a) for the average energy of the fluidized 
layer. 

For layers composed of inelastic (e  = 0.88), smooth (/3 = - 1 )  particles and the 
vibrational regimes investigated by Goldshtein et al. (1995),  coefficient k ( H )  was 
measured and found to be in the range 0.122 < k ( H )  < 0.47 or 0.01 5 k(H) /16  5 0.03. 
For the above values of collisional parameters the present calculations yield k E ,  = 

0.055. 
One can see, therefore, that the present self-similar solution predicts the average 

kinetic energy to be the same order of magnitude as the comparable quantity measured 
in vibrofluidized layers. Both of these values are considerably less than kE,d  for 
conservative media (0.5). The differences between the calculated kE, and measured 
k(H) /16  may clearly be attributed to the difference in shock wave propagation 
conditions. In the present problem the piston moves with constant velocity, sustaining 
the wave propagation regime. On the other hand, the vibrofluidized regime is sustained 
in a discontinuous manner, during piston-layer contact times which are very short 
compared with the vibrational period. During the rest of the period the kinetic energy 
induced by the shock wake wave dies out, which may explain lower values of k ( H ) /  16, 
compared with k E , d .  

Another possible reason for the discrepancy is the difference in the thicknesses of the 
layers, which is infinite in the present model and finite (h, = 10-20 particle 
monolayers) in the experiments of Goldshtein et al. (1995). In our treatment the latter 
parameter may, however, be identified as the length k, of the fluidized region, given by 
(40). Using the value k,  - 7cr calculated for e = 0.9, one can calculate from (44), (45), 
k ( H )  = k( 1.35) = 0.91. Although no experimental data have been collected for such a 
small H ,  the above value of k ( H )  may be compared with the value k ( H )  = 0.80 of this 
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coefficient calculated from the simplified model of the vibrated layers Goldshtein et al. 
(1995). One can see that in spite of apparent differences between the basic problem 
formulation treated here and the approximate model of the vibrofluidized bed, the two 
treatments yield close results for the average granular kinetic energy. 
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Appendix 
The dependence of a,, a, upon the inelasticity e and roughness p coefficients and the 

dimensionless rotary moment of inertia k were evaluated by Goldshtein & Shapiro 
(1995) as 

where 

a a 
a - -  t - i (  1 +  b+(a2+b2)1/2)’ a , = ~ ( 1 - b + ( a 2 + b 2 ) ~ / 2 ) ’  (A 

1-k 
a = (1 --/3,)-- 

l + k  

In the above formulas 0 < e d 1, - 1 < p < 1 and k = 0.4 (the case of uniform spheres, 
considered here). We also impose the following restriction : 

2k 1 -k ‘I2 

< (m-pm) ’ 
which ensures monotonic dependences of the parameters at, a, on the coefficients /3, e 
(Goldshtein & Shapiro 1995). 

Under condition (A 3) the coefficients C,,, C,, C, appearing in the sink term are the 
following explicit and implicit functions of p, e :  

with 
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where 

In the particular case of perfectly smooth particles, i.e. 

at = 2, a, = 0, p =  -1, 
(A 4)-(A 6) reduce to 

(A 11 a, b) 

(A 12a-c) 

a:”( 1 - e2), C, = 0, C, = :( 1 - e). (A 13a-c) 
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